
Renegade Whitepaper

Protocol Specification, v0.6

Christopher Bender
chris@renegade.fi

Joseph Kraut
joey@renegade.fi

Abstract

Renegade1 is an on-chain dark pool. In contrast to other
non-custodial decentralized exchanges, Renegade maintains
complete anonymity during the entire lifecycle of a trade.

Peer-to-peer order matching is inferred via a secure multi-
party computation, and atomic settlement of matched orders
is performed via zero-knowledge proofs of valid matching en-
gine execution. As a result, no third party (including the block
proposer) can learn any information about any user’s token
balances, pending orders, or trade history, ultimately leading
to minimal miner extractable value and higher-quality trade
execution at midpoint prices.

1 Introduction

Currently, non-custodial trading suffers from four significant
problems:
• Miner Extractable Value. Block producers (in a L1 con-

text) and/or sequencers (in a L2 context) can see full trans-
action information, allowing for arbitrary reordering, fron-
trunning, backrunning, and trade censorship.

• Pre-trade transparency. Non-marketable trades that rest
on a limit order book are visible to all third-parties, leading
to quote fading.

• Post-trade transparency. All third-parties can query the
entire state history, allowing for tracking and tracing of
trading activities.

• Address discrimination. Traders can see the origination
address (pseudonymous identity) of all outstanding orders,
leading to worse fills against sophisticated counterparties.

All of these design flaws lead to worse trade execution, par-
ticularly for whale traders with large market impact.

Background on Dark Pools.
A dark pool is a well-understood feature of traditional finance
market structure. Legally classified as “alternative trading
systems", dark pools are off-exchange trading venues with
better privacy protections for traders.
Dark pools have the same functionality as the more fa-

miliar “lit” exchanges like the NYSE or NASDAQ, with one
1Renegade is hiring! Check out our jobs page and get in contact on Twitter.

important difference: The order book is not publicly visible,
meaning that traders cannot see the outstanding quotes of
others. Participants in a dark pool are only informed about
matches on their own trades, allowing for traders to privately
search for a counterparty without broadcasting their trading
intentions to the wider market.

Dark pools are typically used for better execution of trades
on large blocks of equities. If a large tradewere to be executed
at once on a lit exchange, insufficient liquidity would lead
to significant price impact and cross-exchange arbitrage.
TWAP-style orders are often employed to help massage the
order into the lit market over time, but statistical arbitrageurs
can often detect such patterns, once again leading to quote
fading and inferior execution.

In a crypto context, the block trade problem is even worse:
Not only do current decentralized exchanges leak the current
state of the order book, but blockchains inherently have fully-
auditable state history. In addition to seeing the current state
of the order book, any third-party can trace the past activity
of all participants.

Our Solution.
In this paper, we introduce Renegade, a non-custodial dark
pool. We solve all four problems outlined previously by hid-
ing all information about the state of the exchange with
zero-knowledge proofs.

Renegade is functionally equivalent to a CLOB-style DEX,
but with an encrypted and distributed order book. Matches
between users’ orders are inferred via a cryptographically se-
cure multi-party computation. Once a match has been found,
settlements of swapped tokens are done via zero-knowledge
proofs to hide all trade information while maintaining con-
sistency of the system.

In order to implement this hybrid MPC-ZKP match-settle
architecture, we use the collaborative SNARK framework
from Ozdemir et al.2 Essentially wrapping zero-knowledge
proof generation inside of a MPC, collaborative proofs allow
for traders to transact while leaking zero information to
third-parties.

2Ozdemir and Boneh, Experimenting with Collaborative zk-SNARKs: Zero-
Knowledge Proofs for Distributed Secrets, https://eprint.iacr.org/2021/1530

1

https://jobs.renegade.fi
https://twitter.com/renegade_fi
https://eprint.iacr.org/2021/1530

Christopher Bender and Joseph Kraut

In the remainder of this paper, we give a formal protocol
specification for Renegade.
We start by giving a general overview of the protocol in

Section 2, defining the idea of a wallet that maintains private
state. We describe how wallets are created and destroyed,
showing how the commitment tree can allow full user state
privacy. From this, we give a precise specification of all state
that is maintained by the system, both on the client side and
on the smart contract side.

Next, in Section 3, we illustrate the full lifecycle of a trade
from wallet creation to trade settlement, and explain the core
collaborative proving protocol that allows for completely
anonymous trading.

Then, in Section 4, we describe our peer-to-peer protocol
for counterparty discovery. We illustrate the network topol-
ogy of the system, introducing the concept of a relayer. In
addition, we define the key hierarchy that allows for various
levels of access controls into a trader’s wallet.

Next, in Section 5, we describe the concept of indications of
interest, showing how Renegade allows for individual traders
to trade off execution quality for execution latency.

Finally, in the Appendix A, we give formal specifications
for the seven different NP statements that are used to ensure
state consistency within Renegade.

2 Protocol Overview

In this section, we describe the stateful elements of the pro-
tocol. Later, in Section 3, we define the rules by which this
state may be updated.

2.1 Wallets

Balance and order information cannot be recorded on-chain
in-the-clear (or else privacy would be compromised), so
traders instead maintain a privatewallet containing all local
state. A wallet has two primary functions:
• Keep track of what tokens a trader owns: The smart con-
tract only maintains global pools of all token deposits,
so we need to privately keep track of which trader owns
what tokens.

• Keep track of the trader’s set of outstanding orders: We
cannot post order information transparently, so we keep
the set of open orders inside of the wallet.

Note that the wallet𝑊 may be kept off-chain, or the wallet
may be encrypted with a view keypair andwritten on-chain.3
The view keypair is deterministically derived from the user’s
native Ethereum keypair, so a trader only needs to have
access to their Ethereum key in order to recover their wallet.
3For strongest guarantees against data loss, the user may choose to store
the encrypted wallet as on-chain L1 calldata, paying high gas cost. However,
if the user is particularly fee-sensitive, they may want to instead store the
wallet in some off-chain data availability layer, avoiding the more expensive
calldata fees.

Formally, let 𝑀𝑂 , 𝑀𝐵, 𝑀𝐹 ∈ N be public constants defining
the maximum number of orders, balances, and fee approvals,
respectively, that a user may have at once. Now, for some
elliptic curve G over a prime field F, a wallet𝑊 is defined
as a tuple

𝑊 := (𝐵,𝑂, 𝐹, 𝐾, 𝑟) ∈ F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9

with the following definitions:

• 𝐵 = (𝑚𝑖 , 𝑣𝑖)𝑖∈[𝑀𝐵] is a list of size𝑀𝐵 of elements of F2:

▶ 𝑚𝑖 ∈ F is the mint (i.e. contract) address of a token that
is held in this wallet.

▶ 𝑏𝑖 ∈ F is the amount of this token that is held in this
wallet.

• 𝑂 = (𝜆𝑖 ,𝑚1𝑖 ,𝑚2𝑖 , 𝑠𝑖 , 𝑝𝑖 , 𝑎𝑖 , 𝛼𝑖 , 𝜏𝑖)𝑖∈[𝑀𝑂] is a list of size 𝑀𝑂

of elements of F8:

▶ 𝜆𝑖 ∈ F is a flag that denotes the type of the order (0 is
limit, 1 is midpoint-pegged, etc.).

▶ 𝑚1𝑖 ∈ F is the mint address of the base token (e.g.
WETH).

▶ 𝑚2𝑖 ∈ F is the mint address of the quote token (e.g.
USDC).

▶ 𝑠𝑖 ∈ F is the side of the order (0 is buy, 1 is sell).

▶ 𝑝𝑖 ∈ F is the limit price (in units of quote per base),
encoded in fixed-point representation. Ignored if the
order is not a limit type.

▶ 𝑎𝑖 ∈ F is the amount of base currency that the user
wants to buy or sell.

▶ 𝛼𝑖 ∈ F is the minimum fill size, in units of the base
currency.

▶ 𝜏𝑖 ∈ F is the timestamp of when this order was last
updated, and is used for limit order price improvement.

• 𝐹 =

(
pksettlecluster𝑖 , 𝜇𝑖 , 𝛿𝑖 , 𝛾𝑖

)
𝑖∈[𝑀𝐹]

is a list of size 𝑀𝐹 of ele-

ments of G × F3:
▶ pksettlecluster𝑖 ∈ G is the public settle key of some relay
cluster that is allowed to take fees for managing this
wallet.

▶ 𝜇𝑖 ∈ F is the mint address of some token that is used to
pay for gas fees.

▶ 𝛿𝑖 ∈ F is the constant amount of 𝜇𝑖 that this cluster may
debit from the balances 𝐵 upon any call to the contract.

▶ 𝛾𝑖 ∈ F is the fixed-point percentage fee that the cluster
may take upon any successful match.

• 𝐾 =

(
pkroot, pkmatch, pksettle, pkview

)
is a 4-tuple of ele-

ments of G:

2

Renegade Whitepaper

▶ pkroot ∈ G is the public key that corresponds to a se-
cret key skroot ∈ F that must be known in order to
deposit/withdraw from the balances 𝐵, or to update the
order book 𝑂 . This is typically a secret key controlled
by the end user / trader.

▶ pkmatch ∈ G is the public key that corresponds to a
secret key skmatch ∈ F that must be known in order to
match outstanding orders in the order book 𝑂 . This is
typically a secret key controlled by a relayer.

▶ pksettle ∈ G is the public key that corresponds to a secret
key sksettle ∈ F that must be known in order to settle
the outputs of matches or balance transfers. Similarly
to skmatch, this secret key is typically controlled by a
relayer.

▶ pkview ∈ G is the public key that corresponds to a secret
key skview ∈ F that must be known in order to view the
contents of an encrypted wallet𝑊 .

• 𝑟
$∼ F is a random secret that is used to cryptographically

hide the commitments and nullifiers.
As mentioned previously, the local lists 𝐵 and 𝑂 allow

traders to keep all relevant balance and order information
private from third-parties. In Section 2.2, we explain how
the randomness 𝑟 prevents leakage of any information about
a user’s wallet.

Additionally, in Section 4.1, we show how the four public
keys pkroot, pkmatch, pksettle, and pkview allow for various
levels of access control over the wallet𝑊 , and in Section 4.2,
we explain the role of the fee list 𝐹 .

2.2 The Commitment Tree

In order to keep track of which off-chain wallets are valid,
the smart contract maintains an append-only Merkle tree of
commitments.
Let 𝐻 : F → F be a SNARK-friendly hash function, and

let H : F𝑛 → F be the Merkle hash function generated by
iteratively applying 𝐻 . The commitment 𝐶 (𝑊) to a wallet
𝑊 is defined as

𝐶 (𝑊) := 𝐻 (H (𝐵) | | H (𝑂) | | H (𝐹) | | H (𝐾) | | 𝑟) ,
where | | denotes concatenation.

To perform operations on their wallet (depositing and
withdrawing, submitting and cancelling orders, etc.), the
user must reveal some nullifying information about their
old wallet and commit to a new wallet. To ensure that the
update is valid, the user must also supply a zero-knowledge
proof that the update follows the rules of the protocol (e.g.
does not add free tokens to 𝐵) and that the new commitment
is correctly computed.

A wallet is considered valid if it has not been nullified and
its commitment exists somewhere in the global Merkle tree.

Note that the randomness 𝑟 ∈ F must be included in
the definition of a wallet𝑊 and in the computation of the
wallet commitment𝐶 (𝑊) in order tohide the contents of the
wallet: If no such randomness were used, then adversaries
could generate a rainbow table of common wallets (e.g., the
wallet with zero balances and zero orders could be easily
identified).

Zero-knowledge proofs are stateless (i.e., if a ZKP is valid
once, it will always be valid), so the contract needs to main-
tain some state in order to ensure that the user cannot double-
reveal a wallet that was only committed to once. To do this,
when revealing an old wallet, the user computes two nulli-

fiers of a wallet in addition to computing the commitment
to the new wallet.

The nullifier set is the set of all nullifiers that have been
“seen”, meaning that they have been used to reveal a wallet in
the past. The contract will reject commit-reveal transactions
if any of the nullifiers have been seen before.

In order to reveal their wallet𝑊 , the user first constructs
a new wallet𝑊 ′ with the appropriate changes (a new set of
orders, a change in balances to reflect an order settlement,
etc.). The user then computes the two nullifiers of their old
wallet𝑊 , a wallet-spend nullifier and a wallet-match

nullifier.
The wallet-spend nullifier is

𝑁wallet-spend (𝑊) := 𝐻 (𝐶 (𝑊) | | 𝑟)
and the wallet-match nullifier is

𝑁wallet-match (𝑊) := 𝐻 (𝐶 (𝑊) | | 𝑟 + 1) .

We will see in Section 3.4 how this dual-nullification al-
lows for us to perform pairwise matches between the orders
in two different wallets.

Now, the user submits a zero-knowledge proof that, among
other constraints, the following are true:
• There exists some valid Merkle path to 𝐶 (𝑊), implying

that a previous transaction committed to the wallet𝑊 .
• The nullifiers are properly computed for the wallet𝑊 .

• The transition from𝑊 to𝑊 ′ is valid (e.g., the user has not
increased balances without depositing additional tokens).

• The user knows skroot.
The contract checks that the ZK proof is valid and that the
two nullifiers have not already been seen. If this check passes,
the contract marks the nullifiers as seen and inserts the new
commitment 𝐶 (𝑊 ′) into the commitment Merkle tree.

Illustrated in Figure 1, this basic reveal-commit scheme is
used for all possible operations on a user’s wallet.

In addition to the wallet commitments, the global Merkle
tree also accepts insertions of notes. A note is essentially an
unspent transaction output (i.e. a claim on some funds that

3

Christopher Bender and Joseph Kraut

Figure 1. Commit-Reveal Scheme

needs to be redeemed). Notes can come from one of three
sources:
• Settlements of matched orders between wallets.

• Internal transfers from another trader within the dark
pool.

• Fees that are paid to relayers upon successful matches.
Correspondingly, when a note is redeemed, a note-redeem
nullifier is revealed. We describe the note redemption (i.e.
settlement) process further in Section 3.6.

2.3 Entire State

We have seen how wallets kept secret by individual traders,
when combined with the idea of the commitment tree, allows
for privately-held state with global consensus about validity
of that distributed state.
In Table 1, we summarize the previous two sections into

a precise description of all state (with types) held by both
individual clients and the global contract.

3 Trade Lifecycle

In this section, we will go through an entire lifecycle of a
trade, including creating a wallet, depositing into the system,
peer discovery and handshakes in our p2p protocol, themulti-
party computation itself, and settlement of matched trades.
Note that throughout this section we will use the term

“trader” to refer to the party that performs these operations;
however, in practice, the end-trader instead delegates much
of this computation to a trustless stand-in party, termed their
relayer. We discuss more about relayers in Section 4.

3.1 Creating a NewWallet

When a user joins Renegade for the first time, they do not
have a wallet that has been committed in the global Merkle
tree. So, the smart contract has a special functionality that
allows for inclusion of a new wallet𝑊 without revealing
any nullifiers, so long as the user proves that the wallet𝑊
is indeed a new wallet.

Specifically, the user generates a wallet

𝑊 = (𝐵,𝑂, 𝐹, 𝐾, 𝑟)
by setting 𝐵,𝑂, 𝐹 to be the lists of all zeros, setting 𝐾 to be
the tuple of appropriate access control keys as discussed in
Section 4.1, and choosing a random 𝑟 .

Then, this user submits 𝐶 (𝑊) to the contract, along with
a proof that 𝐶 (𝑊) was indeed computed by committing to
some wallet that had zero balances and orders. Once the
contract verifies this proof, it inserts 𝐶 (𝑊) into the global
Merkle tree, now creating a usable wallet for the new trader.

We instantiate this argument of knowledge as a formal NP
statement VALID WALLET CREATE, defined in Section A.1.

3.2 Updating a Wallet

Now that a user has committed to a new wallet𝑊 , they may
update this wallet. When updating a wallet, a trader may do
any subset of the following:
• Deposit or withdraw external ERC-20 balances from out-

side the dark pool.
• Send some tokens to a different user inside of the dark

pool.
• Add new orders or cancel old orders in 𝑂 .

• Add new fee approvals or revoke old approvals in 𝐹 .
Formally, the user generates a new wallet

𝑊 ′ := (𝐵′,𝑂 ′, 𝐹 ′, 𝐾 ′, 𝑟 ′)
with arbitrary 𝑂 ′, 𝐹 ′, and with 𝑟 ′ = 𝑟 + 2. The user also
creates two tuples of transfer tokens, the internal transfer
tuple and the external transfer tuple.

The internal transfer is a tuple

𝑇𝐼 := (�̃�𝐼 , 𝑣𝐼) ∈ F2

and the external transfer is a tuple

𝑇𝐸 := (�̃�𝐸, 𝑣𝐸, 𝑑𝐸) ∈ F3 .
These two tuples determine what token (if any) to be either
transferred to another user inside of the dark pool or de-
posited/withdrawn from the protocol entirely. �̃�𝐼 and �̃�𝐸

denote the token mint, and 𝑣𝐼 and 𝑣𝐸 determine the amount
of tokens to be transferred. 𝑑𝐸 denotes the direction (0 is
deposit, 1 is withdraw) of the external transfer.
Note that either tuple may consist entirely of zeros, indi-

cating that the user does not desire to transfer any tokens.
Also, note that we cannot send 𝑇𝐼 in-the-clear to the smart
contract, or else privacy would be compromised. Instead, we
encrypt 𝑇𝐼 under the receiver’s public settle key pksettlereceiver.
Then, the user submits

𝐶 (𝑊 ′),𝑇𝐸, 𝐸pksettlereceiver
(𝑇𝐼), 𝑁wallet-spend (𝑊), 𝑁wallet-match (𝑊)

to the contract, alongside a proof that𝑊 ′ was indeed formed
by correctly applying the transfer tuples𝑇𝐼 and𝑇𝐸 to the old

4

Renegade Whitepaper

Notation Type

Client State

Balances List 𝐵 = (𝑚𝑖 , 𝑣𝑖)𝑖∈[𝑀𝐵] F2𝑀𝐵

Orders List 𝑂 = (𝜆𝑖 ,𝑚1𝑖 ,𝑚2𝑖 , 𝑠𝑖 , 𝑝𝑖 , 𝑎𝑖 , 𝛼𝑖 , 𝜏𝑖)𝑖∈[𝑀𝑂] F
8𝑀𝑂

Fees List 𝐹 =

(
pksettlecluster𝑖 , 𝜇𝑖 , 𝛿𝑖 , 𝛾𝑖

)
𝑖∈[𝑀𝐹]

(
G × F3

)𝑀𝐹

Keys List 𝐾 =

(
pkroot, pkmatch, pksettle, pkview

)
G4

Randomness 𝑟 F

Contract State

Merkle Path current_merkle_path F𝐿 × B𝐿
Nullifier Set is_nullifier_used F→ B
Wallet Store4 wallet_store G→ G2 × F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9

Table 1. Full Client and Contract State

wallet𝑊 and all commitments and nullifiers are correctly
computed. As before, we provide a formal NP statement of
VALID WALLET UPDATE in Section A.2.

3.3 Handshakes

Now that a user has a wallet𝑊 with non-zero lists of bal-
ances 𝐵 and orders𝑂 , they may begin searching for potential
counterparties to trade with.

In order to find peers, Renegade implements an off-chain
peer-to-peermessaging protocol. Implemented over QUIC
transport5 for high throughput, the p2p network allows for
both gossip for peer discovery and message routing via a
Kademlia distributed hash table.6

To find peers, the trader connects to the network and
selects an order

𝑜 = (𝜆,𝑚1,𝑚2, 𝑠, 𝑝, 𝑎, 𝛼, 𝜏) ∈ 𝑂
that they would like to match. The trader then finds the
balance 𝑏 = (𝑚, 𝑣) ∈ 𝐵 that covers this order (e.g., if 𝑜 is
a buy order, then𝑚 =𝑚2). In addition, the trader selects a
relayer fee

𝑓 =

(
pksettlecluster, 𝜇, 𝛿,𝛾

)
to be taken by the party that is performing this computation.

Now, the trader generates three values 𝐻𝑜 = 𝐻 (𝑜 | | 𝑟),
𝐻𝑏 = 𝐻 (𝑏 | | 𝑟), and 𝐻𝑓 = 𝐻 (𝑓 | | 𝑟). These are hiding
and binding commitments to the chosen order, associated
covering balance, and fee tuple; they used for cross-input
consistency between the MPC and the zero-knowledge proof.
4The wallet store maps an ElGamal public view key (of typeG) to an encryp-
tion of a symmetric key (of type G2), alongside the symmetric encryption
of the wallet (of type F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9).
5Langley et al., The QUIC Transport Protocol: Design and Internet-Scale De-
ployment, https://dl.acm.org/doi/10.1145/3098822.3098842
6Maymounkov and Mazières, Kademlia: A Peer-to-peer Information System
Based on the XOR Metric,
https://www.scs.stanford.edu/ dm/home/papers/kpos.pdf

In addition, the trader computes𝐻𝑟 = 𝐻 (𝑟), the hash of their
wallet randomness, to be used in the future to cryptographi-
cally hide match outputs.

Finally, the trader generates a zero-knowledge proof 𝜋 of
the statement VALID COMMITMENTS, as defined in Sec-
tion A.3. This statement essentially proves that the trader
does indeed know some unspent wallet𝑊 containing an
order 𝑜 , balance 𝑏, fee 𝑓 , and randomness 𝑟 with the given
hashes𝐻𝑜 ,𝐻𝑏 ,𝐻𝑓 , and𝐻𝑟 , and that there exist enough funds
in the wallet𝑊 to pay for the chosen relayer fee 𝑓 .

Note that the generation of 𝜋 may be done completely
asynchronously and be reused over multiple attempted hand-
shakes, as the proof does not depend on the counterparty.

Now that the trader has a generated a proof 𝜋 of VALID
COMMITMENTS, they may begin handshaking with poten-
tial counterparties.7 The trader sends the handshake tuple

𝐻 :=
(
𝜋, 𝑁wallet-match (𝑊), pksettle, 𝐻𝑜 , 𝐻𝑏, 𝐻𝑓 , 𝐻𝑟

)
to a potential counterparty, and the counterparty checks that
the proof is correct, that the wallet-match nullifier has not
yet been seen on-chain (meaning that the wallet would be
already spent), and that the tuple of commitments(

𝐻𝑜1 , 𝐻𝑏1 , 𝐻𝑓1 , 𝐻𝑜2 , 𝐻𝑏2 , 𝐻𝑓2

)
has not already been cached as a non-match.

If the proof is accepted by the counterparty and the order
commitment pair has not already been cached, then the
counterparty responds with a similar handshake tuple 𝐻2.
The trader checks that the counterparty’s handshake proof
is valid, and if so, the traders proceed with the MPC.

7In order to bootstrap connection into the p2p network, Renegade maintains
an ENS record of authoritative relayers that allows for new entrants to
find counterparties.

5

https://dl.acm.org/doi/10.1145/3098822.3098842
https://www.scs.stanford.edu/~dm/home/papers/kpos.pdf

Christopher Bender and Joseph Kraut

3.4 MPC and Match Proofs

In order to match two party’s orders, we proceed in three
phases: First, perform a secret-sharing-based MPC that im-
plements matching engine execution between the orders.
Then, without opening the secret-shared output, feed this
execution trace into a collaborative proof of the NP state-
ment VALID MATCHMPC. Finally, open the outputs of both
the matching engine and the collaborative proof.

This three-phase matching process allows us to only com-
pute secret-shares of all relevant matching information, then
atomically open all secret-shares at once.

Let Party 1 hold order 𝑜1 ∈ F8, balance 𝑏1 ∈ F2, fee 𝑓1 ∈ F5,
and randomness 𝑟1 ∈ F. Let 𝑜2, 𝑏2, 𝑓2, 𝑟2 be defined similarly
for Party 2. The parties Shamir secret-share all eight of these
values with each other.
Now, given all the shares8

[𝑜1], [𝑏1], [𝑓1], [𝑟1], [𝑜2], [𝑏2], [𝑓2], [𝑟2],
the parties run a SPDZ-style maliciously-secure MPC-with-
abort to compute a secret-share of the match tuple

𝑀 := (�̂�1, �̂�2, 𝑣1, 𝑣2, 𝑑, 𝑓1, 𝑓2) ∈ F15

and a secret-share of a hiding commitment to the tuple

𝐻𝑀 := 𝐻 (𝑀 | | 𝐻𝑟1 + 𝐻𝑟2).

This tuple gives the matched values between the two or-
ders 𝑜1 and 𝑜2 when constrained by the balances 𝑏1 and 𝑏2:
That is, assuming the orders are of the same quote/base pair,
𝑣𝑖 is the amount of �̂�𝑖 that is swapped between the two par-
ties for 𝑖 = 1, 2. 𝑑 ∈ B is the direction of the transfer, where
𝑑 = 0 means that Party 1 can increase their balances by 𝑣1
units of 𝑚1 and decrease their balances by 𝑣2 units of 𝑚2,
and vice-versa for Party 2.

We include the randomness𝐻 (𝑟1) +𝐻 (𝑟2) in the computa-
tion of the matches commitment in order to prevent similar
rainbow table-style attacks against commitments to match
tuples.

Importantly, the MPC functionality that computes𝑀 must
re-compute all six of the commitments

𝐻𝑜1 , 𝐻𝑏1 , 𝐻𝑓1 , 𝐻𝑜2 , 𝐻𝑏2 , 𝐻𝑓2

and zero out the output matches𝑀 in case either party lies
about their inputs to the MPC. Since the hashes used in the
commitment function are preimage-resistant, it is infeasible
for either of the parties to manipulate their inputs without
also changing their commitments.
Importantly, note that the parties do not open 𝑀 immedi-

ately. If the parties were to open the match now, both parties
8In addition to the secret-shared inputs described here, the parties must also
agree on a vector of midpoint prices from an oracle for a fixed number of
assets. Note that these midpoint prices (𝑚𝑖 , 𝑝𝑖) must be revealed as public
variables in the proof of VALID MATCH MPC, as the contract must assert
that the prices are reasonable.

would learn information about each others’ orders while
being able to hangup the connection.

Now that the parties have secret-shares of every single
wire in the MPC matching functionality including the out-
put𝑀 , they perform a collaborative proof that produces a
secret-share of a proof 𝜋𝑀 of the statement VALID MATCH
MPC. Defined formally in Section A.5, this statement essen-
tially proves that given the parties’ collective inputs 𝑜1, 𝑏1,
𝑜2, 𝑏2, the commitment 𝐻𝑀 is indeed the commitment to the
output matches, when the matching engine is run on the
input orders and balances.

Now, the traders may finally open 𝜋𝑀 and 𝑀 (alongside
auxiliary MPC outputs 𝐻𝑀 , 𝑍1, and 𝑍2, as defined in Sec-
tion A.6), revealing the output of the matches and a proof
that the matches lists were correctly computed from valid
pair of orders.9

We illustrate this entire handshake and matching process
in Figure 2.

3.5 Encumbering

Once the proof 𝜋𝑀 , matches tuple𝑀 , and auxiliary outputs
𝐻𝑀 , 𝑍1, and 𝑍2 have been opened, both parties now have
enough information to complete the match and the commu-
nication link between the parties may be closed.

As a final step before this proof may be submitted to
the contract, the trader must prepare a few slightly altered
matches lists, termed notes. These notes are essentially per-
trader records of what tokens were swapped and are directly
generated from 𝑀 . One note is generated for each of the
traders’ wallets:

𝑁1 :=
(
(�̂�1, 𝑣1, 𝑑), (�̂�2, 𝑣2, 1 − 𝑑), (𝜇1, 𝛿1, 1), 𝜔, 𝑟

)
∈ F11

and

𝑁2 :=
(
(�̂�1, 𝑣1, 1 − 𝑑), (�̂�2, 𝑣2, 𝑑), (𝜇2, 𝛿2, 1), 𝜔, 𝑟 + 1

)
∈ F11,

where 𝑟 = 𝐻𝑟1 + 𝐻𝑟2

Each note consists of three 3-tuples, plus two field ele-
ments𝜔 and a randomness. Each of the three 3-tuples consist
of a mint (i.e. token) address, the value of that token to be
transferred in/out of the user’s wallet, and the direction of
the transfer.

The flag 𝜔 ∈ B equals 1 if the note is generated from a
match on a wallet, and equals 0 if the note is generated from
either a fee cut or an internal transfer. Here, since these notes
𝑁1 and 𝑁2 are the notes from a wallet match, we set 𝜔 = 1.

9The naive way to open the MPC is for each party to send their secret-
shares to each other. This scheme fails to have opening fairness, however,
as the first party to receive the other’s shares can simply hang up the
connection without replying with their corresponding shares. To remedy
this, we optionally allow for opening to be routed via an arbitrary trusted
third party to ensure fair opening.

6

Renegade Whitepaper

Figure 2. Inter-Relayer Communication Flow

In addition to these two notes, we generate two extra notes
for the relayer fees, plus one final note for the global protocol
fee.

We cannot send notes in-the-clear to the contract (or else
third-parties would learn what tokens are being swapped),
so we encrypt10 these two matches lists under the corre-
sponding settle key of each party:

𝐸pksettle1
(𝑁1) and 𝐸pksettle2

(𝑁2)

Now, the trader generates a proof 𝜋𝐸 of the statement VALID
MATCH ENCRYPTION as defined in Section A.7, which
essentially shows that the notes 𝑁1, 𝑁2 we indeed formed
from the original match tuple𝑀 , that𝑀 is indeed consistent
with the publicly-known commitment𝐻𝑀 , and that the notes
are properly encrypted.
Finally, after generating 𝜋𝐸 , the trader is now ready to

interact with the smart contract. The trader sends four dif-
ferent proofs 𝜋1, 𝜋2, 𝜋𝑀 , 𝜋𝐸 to the contract (i.e. two proofs of
VALID COMMITMENTS, one proof of VALID MATCH MPC,
and one proof of VALID MATCH ENCRYPTION), alongside
the union of public variables for all four proofs.
The contract checks that all four zero-knowledge proofs

are valid under the given public inputs. If all checks pass, the
contract then marks the two nullifiers 𝑁wallet-match (𝑊1) and
𝑁wallet-match (𝑊2) as being seen, an inserts all of the encrypted
notes into the commitment tree.
Note that this nullification is different from how reveal-

commit schemes work in VALID WALLET UPDATE as in
10In our instantiation of the protocol, we use ElGamal to encrypt all notes.
In addition to being a SNARK-friendly encryption scheme, ElGamal has the
property of being key-private, meaning that third-parties cannot even see
which public settle key of the party who is receiving the funds.

Section 3.2. Here, we only mark the wallet-match nullifiers
as seen, not the wallet-spend nullifiers. In addition, we do
not insert a commitment to a wallet into the global Merkle
tree; rather, we are inserting encrypted notes.

Note that since we have revealed the wallet-match nulli-
fiers, calling VALID WALLET UPDATE is now impossible,
as neither party can prove that their wallet has an unseen
wallet-match nullifier. Both wallets are now considered “en-
cumbered”, and the only operation that either party may
perform is to settle their matched order.

3.6 Settlement

Now that the trader’s wallet𝑊 has been matched and en-
cumbered, they need to settle this match in order to update
their balances and un-encumber the wallet.

To do this, the trader first obtains a note

𝑁 =

(
(�̂�1, 𝑣1, 𝑑1), (�̂�2, 𝑣2, 𝑑2), (�̂�3, 𝑣3, 𝑑3), 𝜔, 𝑟

)
.

The trader can find the note by either remembering thematch
they just performed, or if the note was generated from an
internal transfer from a different user inside the pool, by
scanning through the commitment history to find the most
recent encrypted note and decrypt it under their secret key
sksettle.

Now, the trader constructs a new wallet

𝑊 ′ = (𝐵′,𝑂 ′, 𝐹 ′, 𝐾 ′, 𝑟 ′)
such that 𝐹 ′ and 𝐾 ′ are unchanged from the original wallet
𝑊 , and with 𝑟 ′ = 𝑟 + 2.

To construct 𝐵′, the trader simply adds or subtracts values
𝑣𝑖 from the balances list according to the note 𝑁 . If the trader

7

Christopher Bender and Joseph Kraut

is settling a matched order, there will always be exactly one
balance that is increased, and exactly one balance that is
decreased.

Finally, to construct 𝑂 ′, the trader finds the order

𝑜 = (𝜆𝑖 ,𝑚1𝑖 ,𝑚2𝑖 , 𝑠𝑖 , 𝑝𝑖 , 𝑎𝑖 , 𝛼𝑖 , 𝜏𝑖) ∈ 𝑂
that was matched by 𝑁 and decreases the size 𝑎𝑖 by the
corresponding matched value 𝑣1 or 𝑣2 depending on the
direction of the match.

Now, given this newwallet𝑊 ′ that was formed by directly
settling the match note𝑁 against the old wallet𝑊 , the trader
constructs a proof 𝜋𝑆 of the statement VALID SETTLE as
defined in Section A.8.
In addition to revealing the commitment to the new wal-

let 𝐶 (𝑊 ′) and the wallet-spend and wallet-match nullifiers
as normal, the trader also reveals a note-redeem nullifier
defined as

𝑁 note-redeem (𝑁) := 𝐻
(
𝑁 | | pksettle

)
.

Note-redeem nullifiers exist in order to prevent replay-style
attacks by double-settling a matched order.
The trader then sends this proof 𝜋𝑆 to the contract, and

assuming it is correctly verified, the contract will mark both
the wallet-spend and note-redeem nullifiers as being seen,
and insert the new commitment 𝐶 (𝑊 ′) into the Merkle tree.
Note that if 𝜔 = 0 (i.e., the note came from an internal
transfer or fee output), then the contract also asserts that the
wallet-match nullifier has not been seen, andmarks it as seen.
This allows the system to have a single operation (settlement)
for all notes, no matter how the note was generated.
Now, the trader has settled their matched orders, and all

three nullifiers (wallet-match, wallet-spend, note-redeem)
have been seen, making further use of either the old wallet
𝑊 or the used note 𝑁 impossible.

In summary, this basic update-match-settle lifecycle is
used for every single order that a trader would like to per-
form, all while avoiding any information leakage to third-
parties.

4 Relayer Delegation

In the previous Section 3 outlining the entire lifecycle of a
trade, we assumed that the end-trader would be online at
all times to handshake and perform MPC calculations with
arbitrary counterparties.
However, this is unreasonably restrictive: Traders may

want to “fire and forget” their orders, much like how current
centralized exchanges operate. In addition, the trader may
want to handshake with many counterparties at once (every
single other node in the network may have a valid counter-
order).
To allow for this, we introduce the concept of relayers.

A relayer is essentially a stand-in for a trader that holds

Figure 3. Key Derivation Hierarchy

their wallet𝑊 and continually attempts MPC calculations
followed by match-settle proofs in the event of a match.
In Section 4.1, we describe the key hierarchy that allows

for trust minimization between the end-trader and their re-
layer, and in Section 4.2 we describe the high-level network
topology of the system, including the idea of “relayer clus-
ters”. Finally, in Section 4.3, we describe the role of the fee
list 𝐹 in compensating the relayer.

4.1 Key Hierarchy

In designing the relayer system, the primary goal is trust
minimization between the end-trader and the relayer. Specifi-
cally, a relayer should only ever be able to match outstanding
orders and settle previous matches; the relayer should not
be able to create or cancel orders, or deposit or withdraw
funds.

To implement this level of access control, we introduce the
key hierarchy, as outlined in Figure 3. Alongside the base
Ethereum keypair, we have four different levels of Renegade-
native keys, all with various levels of access controls.

The key hierarchy begins with a trader’s Ethereum keypair
(pketh, sketh) on the secp256k1 curve. Let

(𝑟, 𝑠, 𝑣) ∈ B256 × B256 × B8

be the deterministic signature of themessage create_sk_root.
Then, construct

skroot = 𝐻 (𝑟 | | 𝑠 | | 𝑣)
and recover the corresponding public key pkroot.

Using this process, we may always re-derive the root key-
pair so long as the trader does not lose their native Ethereum
keypair. Note that we may skip this derivation entirely and
simply generate a random skroot if the trader does not want
to maintain an Ethereum keypair, or if the trader wants to
use a Renegade-native multisig solution.

This root keypair is the ultimate authority over a user’s
wallet: Any user who knows this secret key may perform

8

Renegade Whitepaper

Figure 4. Network Topology, showing matches derived from
both MPC and internal proofs.

arbitrary operations to the balances and orders inside the
wallet, including withdrawing all funds.

Now that we have skroot, we derive the other three key-
pairs in a very similar way:

skmatch = 𝐻
(
signskroot (create_sk_match)

)
sksettle = 𝐻

(
signskmatch (create_sk_settle)

)
skview = 𝐻

(
signsksettle (create_sk_view)

)
and correspondingly recover the public keys pkmatch, pksettle,
and pkview. These three final keys are thematch keypair,
the settle keypair, and the view keypair.

Any party who knows the match keypair is allowed to
match outstanding orders in the orders list 𝑂 ; importantly,
this key is not able to arbitrarily modify 𝑂 , deposit, or with-
draw. The settle keypair has less authority, only being able
to settle previous matches, or settle direct token transfers
from another user inside the pool. Finally, the view keypair
has the least amount of authority, only being able to decrypt
and view the wallet; the view keypair cannot modify the
wallet in any way.

By introducing this five-level key hierarchy, the system
allows for various levels of access control. In particular, the
trader only sends skmatch to the relayer who will match or-
ders on the trader’s behalf. Even if the relayer is completely
compromised, the worst outcome is that the relayer leaks
the wallet𝑊 , compromising the privacy of the trader, but
not stealing funds.

4.2 Network Architecture

In Figure 4, we illustrate the high-level p2p network topology.

At the base layer, the network simply consists of various
relayers that communicate with each other. The network is
permissionless, meaning that at any time any new trader
may enter the network as their own relayer and begin MPC
handshakes.

However, since the network needs to support a large num-
ber of potential matches on many orders, the relayers are
grouped into logical units called relayer clusters.
These clusters are fault-tolerant replicated groups of re-

layer nodes that all manage the same set of wallets. This
replication allows for higher throughput of matches (since
many relayers can try different matches at once), and allows
for fault-tolerance under network interruption and partition.
In Figure 4, we illustrate three different clusters commu-

nicating with each other: Private Cluster 1 with three
relayers, a smaller Private Cluster 2 with two relayers,
and a special larger Public Gatewaywith four relayers. The
Public Gateway is a cluster of relayers like the rest (i.e., it
has no special permissions), but is a Renegade-operated set
of relayers that allows for bootstrap connectivity into the
network, and allows for traders who do not want to run their
own infrastructure to participate in the network.

Note that privacy-concerned high-volume traders should
run their own relay clusters, as using the Gateway exposes
trader’s wallets to the centralized Gateway provider.
In addition to the standard handshake and MPC process,

Figure 4 also illustrates the idea of an “internal match”, to be
described in Section 5. Also, Figure 4 illustrates the submis-
sion of a VALID MATCH MPC proof to the global Merkle
commitment tree and zero-knowledge-proof verification con-
tract.

4.3 Relayer Fees

In the definition of a wallet𝑊 , there is one final element
that we have not yet described: The fee list 𝐹 . Since run-
ning a relayer requires somewhat expensive hardware (e.g.,
zero-knowledge proving is quite memory-intensive), and
since smart contract calls require some protocol fee, relayers
naturally need compensation for performing matching and
settlement.
To implement this functionality, each relayer that wants

to match public wallets advertises a tuple(
pksettlecluster𝑖 , 𝜇𝑖 , 𝛿𝑖 , 𝛾𝑖

)
.

The key pksettlecluster𝑖 is the settle key of some wallet controlled
by a relay cluster. 𝜇𝑖 is the mint address of the token that
constant fees are denominated in. This is typically either
some stablecoin or some L2-native token to pay for fees.
The first fee parameter 𝛿𝑖 is the constant fee that the relayer
may take upon any successful operation on the user’s wallet
(matching, settling, etc.), and the second fee parameter 𝛾𝑖 is
the percentage fee that they relayer may take on each match.

9

Christopher Bender and Joseph Kraut

If this key-fee tuple is acceptable, the trader inserts this
tuple into their fee list 𝐹 . We include a formalization of this
fee-taking process in Section A.8.
Importantly, note that fees may be avoided entirely for

traders who run their own relay clusters: Indeed, we charge
sizeable fees on the Public Gateway to promote maximal
decentralization of the network.

5 Indications of Interest

Asmentioned in Section 2, the principal goal of the base-layer
Renegade system is to ensure complete privacy of all relevant
values (orders, balances, matches, etc.) from all third-parties
to the trade.

However, in practice, having completely obfuscated “dark”
orders may not be optimal for liquidity provision: Indeed,
there is a core tradeoff between quality-of-execution and
speed-of-execution (dark pools give best price, whereas lit
pools let you transact immediately). For traders who may
want to tradeoff price for speed, Renegade allows for addi-
tional indications of interest flags.

An indication of interest is some predicate on a wallet𝑊 ,
proved in zero-knowledge. For example, a trader may reveal
the fact “my wallet𝑊 is a buy order of WETH/USDC at
the midpoint price”, without disclosing the size of the trade.
To ensure that the trader is not lying, this predicate must
be proved in zero-knowledge as a part of the handshake
process.

In Section A.4, we give formal NP statments for every IoI
flag that Renegade supports, including the base/quote token
pair, the side (buy or sell), if the order is a midpoint-pegged
order, the limit price of the order, and the size of the order.

Note that the maximal indication of interest (i.e., turning
on and proving all IoI flags) makes an order equivalent to a
lit order. Indeed, we can embed an entire lit orderbook with
dark-lit crossover matches inside of Renegade.

Note that if a counterparty turns on all IoI flags, there
is actually no need to compute a MPC as normal: We may
directly lift this lit order and match it with one of our own
orders. In Section A.6, we formally define the NP statement
VALID MATCH LIT that allows for this functionality.

Finally, one optimization to note is that if a relayer man-
ages two different wallets𝑊1 and𝑊2 that contain an overlap-
ping order, once again MPC is not necessary and the relayer
may simply match these two orders directly. Here, the re-
layer computes the same VALID MATCH MPC as normal,
but does not need to actually run a MPC with itself in order
to generate the proof 𝜋𝑀 .

6 Conclusion

Renegade aims to solve the four core problems outlined in
Section 1: MEV, pre-trade transparency, post-trade trans-
parency, and address discrimination. We claim the following
two strong privacy properties as solutions to these problems:
• All third parties who are neither the end-user nor a man-
aging relayer learn zero information about the activities
inside of the pool, other than global token inflows and
outflows. In particular, third parties cannot deduce the
balances or orders of any wallet, and they cannot deduce
any details of any match or settlement other than the fact
that a match and settlement occurred between some pair
of traders.

• Individual relayers learn nothing about the state of bal-
ances and orders of wallets that they do not manage. The
Public Gateway is not a special relay cluster and has no
in-protocol advantages over private clusters.

In all, we have seen how we can combine the ideas of a
commit-reveal scheme, pairwise MPC, and zero-knowledge
settlement to create a protocol that is functionally equivalent
to a CLOB, yet maximally private; Renegade allows for a
truly anonymous global exchange of value.

10

Renegade Whitepaper

A Formal NP Statements

Here, we give precise specifications for each of the eight different NP statements that are used by the protocol. All of these
statements are implemented as rank-one constraint systems and proved/verified via Bulletproofs.11

Each statement consists of a list of “public variables” that are publicly known to the verifier. The “private variables” are
the secret witnesses known only by the prover. Finally, we have a “such that” list of all properties that are encoded into the
constraint systems.
Note: For notational clarity, we have omitted the range constraints. These are added by simply constraining all input

variables (both public and private) to be less than 2128.

A.1 VALID WALLET CREATE

With Public Variables
• 𝐶 (𝑊 ′) ∈ F, the commitment to the new wallet.
• 𝐸pkview (𝑊 ′) ∈ F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9, the encryption of𝑊 ′

under pkview

I Know Private Variables
• 𝐹 ∈ F4𝑀𝐹

• 𝐾 =

(
pkroot, pkmatch, pksettle, pkview

)
∈ G4

• skroot, skmatch, sksettle, skview ∈ F
• 𝑟 ∈ F

Such That
• 𝐶 (𝑊 ′) = 𝐶 (02𝑀𝐵 , 08𝑀𝑂 , 𝐹 , 𝐾, 𝑟)
• 𝐸pkview (𝑊 ′) is the proper ElGamal encryption of 𝑊 ′

under the public key pkview

• pkroot is the valid public key corresponding to skroot

• pkmatch is the valid public key corresponding to skmatch

• pksettle is the valid public key corresponding to sksettle

• pkview is the valid public key corresponding to skview

• skmatch = 𝐻
(
signskroot (create_sk_match)

)
• sksettle = 𝐻

(
signskmatch (create_sk_settle)

)
• skview = 𝐻

(
signsksettle (create_sk_view)

)

11Bünz et al., Bulletproofs: Short Proofs for Confidential Transactions and More, https://eprint.iacr.org/2017/1066

11

https://eprint.iacr.org/2017/1066

Christopher Bender and Joseph Kraut

A.2 VALID WALLET UPDATE

With Public Variables
• 𝐶 (𝑊 ′) ∈ F, the commitment to the new wallet.
• 𝐸pkview (𝑊 ′) ∈ G2 × F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9, the encryption of
𝑊 ′ under pkview

• 𝑁wallet-spend (𝑊) ∈ F
• 𝑁wallet-match (𝑊) ∈ F
• 𝑅global ∈ F, the current root of the commitment Merkle
tree.

• pksettlereceiver, the settle public key of the user to receive the
internal transfer.

• 𝐸pksettlereceiver
(𝑇𝐼), the encryption of the internal transfer tu-

ple.

• 𝑇𝐸 =

(
�̃�𝐸, 𝑣𝐸, 𝑑𝐸

)
∈ F3, the external transfer tuple.

• 𝜏 ∈ F, the timestamp of this update.

I Know Private Variables
• 𝑊 = (𝐵,𝑂, 𝐹, 𝐾, 𝑟), the old wallet.
• 𝑊 ′ = (𝐵′,𝑂 ′, 𝐹 ′, 𝐾 ′, 𝑟 ′), the new wallet.
• Open(𝐶 (𝑊), 𝑅global), a Merkle proof that 𝐶 (𝑊) is in-

serted into the commitment tree.
• skroot ∈ F
• 𝑇𝐼 = (�̃�𝐼 , 𝑣𝐼) ∈ F2, the internal transfer tuple.

Such That
• 𝐶 (𝑊) is correctly computed.
• 𝐶 (𝑊 ′) is correctly computed.
• 𝐸pkview (𝑊 ′) is correctly computed.

• 𝐸pksettlereceiver
(𝑇𝐼) is correctly computed.

• 𝑁wallet-spend (𝑊) is correctly computed.
• 𝑁wallet-match (𝑊) is correctly computed.
• Open(𝐶 (𝑊), 𝑅global) is a valid Merkle proof.
• 𝐾 ′ = 𝐾

• 𝑟 ′ = 𝑟 + 2
• pkroot is the valid public key corresponding to skroot

• 𝑑𝐸 ∈ {0, 1}
• For all balances 𝑏 ′𝑖 = (𝑚′

𝑖 , 𝑣
′
𝑖) ∈ 𝐵′:

▶ Either𝑚′
𝑖 = 0, or𝑚′

𝑖 is unique in the list of all mints
of 𝐵′. (i.e., no duplicate mints are allowed).
▶ 𝑣 ′𝑖 is equal to ∑︁

𝑗 ∈[𝑀𝐵] s.t.𝑚 𝑗=𝑚
′
𝑖

𝑣 𝑗

plus
1
𝑚′

𝑖
=�̃�𝐸∧𝑑𝐸=0𝑣𝐸 − 1

𝑚′
𝑖
=�̃�𝐸∧𝑑𝐸=1𝑣𝐸

minus
1𝑚′

𝑖
=�̃�𝐼

𝑣𝐼

(i.e., balances are unchanged, except for a deposit or
withdraw according to 𝑇𝐸 and a transfer according
to 𝑇𝐼)

• For all orders 𝑜 ′𝑖 = (𝜆′𝑖 ,𝑚′
1𝑖 ,𝑚

′
2𝑖 , 𝑠

′
𝑖 , 𝑝

′
𝑖 , 𝑎

′
𝑖 , 𝛼

′
𝑖 , 𝜏

′
𝑖) ∈ 𝑂 ′:

▶ Either 𝑜 ′𝑖 = 08, or (𝑚′
1𝑖 ,𝑚

′
2𝑖) is unique in the list of

all mint pairs of 𝐵′. (i.e., no duplicate token pairs are
allowed).
▶ If 𝜆′𝑖 = 𝜆𝑖 and𝑚′

1𝑖 = 𝑚1𝑖 and𝑚′
2𝑖 = 𝑚2𝑖 and 𝑠 ′𝑖 = 𝑠𝑖

and 𝑝 ′𝑖 = 𝑝𝑖 and 𝑎′𝑖 = 𝑎𝑖 and 𝛼 ′
𝑖 = 𝛼𝑖 , then 𝜏 ′𝑖 = 𝜏𝑖 .

Otherwise, 𝜏 ′𝑖 = 𝜏 . (i.e., if any order has changed,
then the timestamp is set to the current time)

12

Renegade Whitepaper

A.3 VALID COMMITMENTS

With Public Variables
• 𝑁wallet-match (𝑊) ∈ F
• 𝑅global ∈ F, the current root of the commitment Merkle
tree.

• pksettle ∈ G
• 𝐻𝑜 , 𝐻𝑏, 𝐻𝑓 ∈ F, hiding commitments to an order, bal-

ance, and fee tuple, respectively.
• 𝐻𝑟 ∈ F, the hash of the randomness.

I Know Private Variables
• 𝐶 (𝑊) ∈ F, the commitment to the wallet.
• 𝑅𝐵, 𝑅𝑂 , 𝑅𝐹 ∈ F, Merkle roots of the balances, orders,

and fees of the wallet.
• 𝐾 ∈ G4, the key list of the wallet.
• 𝑟 ∈ F, the randomness of the wallet.
• Open(𝐶 (𝑊), 𝑅global), a Merkle proof that 𝐶 (𝑊) is in-
serted into the global commitment tree.

• Open(𝑜, 𝑅𝑂), a Merkle proof that 𝑜 is inserted into the
internal Merkle tree of orders.

• Open(𝑏, 𝑅𝐵), a Merkle proof that 𝑏 is inserted into the
internal Merkle tree of orders.

• Open(𝑓 , 𝑅𝐹), a Merkle proof that 𝑓 is inserted into the
internal Merkle tree of orders.

• skroot ∈ F
• skmatch ∈ F
• 𝑜 = (𝜆,𝑚1,𝑚2, 𝑠, 𝑝, 𝑎, 𝛼, 𝜏) ∈ 𝑂
• 𝑏 = (𝑚, 𝑣) ∈ 𝐵
• 𝑏 ′ = (𝑚′, 𝑣 ′) ∈ 𝐵, the balance corresponding to the

constant fee 𝛿 .
• 𝑓 =

(
pksettlecluster, 𝜇, 𝛿,𝛾

)
∈ 𝐹

Such That

• 𝑁wallet-match (𝑊) is correctly computed.

• 𝐶 (𝑊) = 𝐻 (𝑅𝐵 | | 𝑅𝑂 | | 𝑅𝐹 | | H (𝐾) | | 𝑟)

• Open(𝐶 (𝑊), 𝑅global) is a valid Merkle proof.

• Either Open(𝑜, 𝑅𝑂) is a valid Merkle proof, or pkroot is
the valid public key corresponding to skroot.

• Open(𝑏, 𝑅𝐵) is a valid Merkle proof.

• Open(𝑓 , 𝑅𝐹) is a valid Merkle proof.

• pkmatch is the valid public key corresponding to skmatch

• 𝐻𝑜 = 𝐻 (𝑜 | | 𝑟)

• 𝐻𝑏 = 𝐻 (𝑏 | | 𝑟)

• 𝐻𝑓 = 𝐻 (𝑓 | | 𝑟)

• 𝐻𝑟 = 𝐻 (𝑟)

• 𝑚 = 𝑠 ·𝑚1 + (1 − 𝑠) ·𝑚2

• 𝑚′ = 𝜇 and 𝑣 ′ ≥ 𝛿

13

Christopher Bender and Joseph Kraut

A.4 Indications of Interest Statements

In this section, we provide the formal specifications for a few different indications of interest. Note: We only provide partial
statements here; each statement should be conjoined with a proof of VALID COMMITMENTS.

A.4.1 VALID IOI TYPE. Simply add “𝑘 ∈ F” to the public variables.

A.4.2 VALID IOI PAIR. Simply add “𝑚1,𝑚2 ∈ F” to the public variables.

A.4.3 VALID IOI SIDE. Simply add “𝑠 ∈ F” to the public variables.

A.4.4 VALID IOI LIMIT PRICE. Simply add “𝑝 ∈ F” to the public variables.

A.4.5 VALID IOI AMOUNT. Simply add “𝑎 ∈ F” to the public variables.

A.4.6 VALID IOI BALANCE BOUND. Add “𝜈 ∈ F” to the public variables and “𝑣 ≥ 𝜈” to the constraint system.

A.4.7 VALID IOI FEE. Simply add “𝑓 ∈ F5” to the public variables.

14

Renegade Whitepaper

A.5 VALID MATCH MPC

With Public Variables
• (𝑚𝑖 , 𝑝𝑖)𝑖∈[𝑀𝑃] ∈ F2𝑀𝑃 , the vector of midpoint oracle
prices.

• 𝐻𝑜1 , 𝐻𝑏1 , 𝐻𝑓1 , 𝐻𝑟1 ∈ F, the commitments to the order,
balance, fee, and randomness from Relayer 1.

• 𝐻𝑜2 , 𝐻𝑏2 , 𝐻𝑓2 , 𝐻𝑟2 ∈ F, the commitments to the order,
balance, fee, and randomness from Relayer 2.

• 𝐻𝑀 ∈ F, the hiding commitment to the matches tuple
𝑀 .

• 𝑍1 ∈ F, the bit that equals 1 iff 𝑀 is a non-trivial
matches list.

• 𝑍2 ∈ F, the zeroing bit that equals 1 if any party lies
about their secret input w.r.t. to the public commitments
𝐻𝑜1 , 𝐻𝑜2 , 𝐻𝑏1 , 𝐻𝑏2 , 𝐻𝑓1 , 𝐻𝑓2 , and equals 1 otherwise.

I Know Private Variables
• 𝑜1 = (𝜆1,𝑚11 ,𝑚21 , 𝑠1, 𝑝1, 𝑎1, 𝛼1, 𝜏1) ∈ F8

• 𝑜2 = (𝜆2,𝑚12 ,𝑚22 , 𝑠2, 𝑝2, 𝑎2, 𝛼2, 𝜏2) ∈ F8

• 𝑏1 = (𝑚1, 𝑣1) ∈ F2

• 𝑏2 = (𝑚2, 𝑣2) ∈ F2

• 𝑓1 =
(
pksettlecluster1 , 𝜇1, 𝛿1, 𝛾1

)
∈ F5

• 𝑓2 =
(
pksettlecluster2 , 𝜇2, 𝛿2, 𝛾2

)
∈ F5

• 𝑀 = (�̂�1, �̂�2, 𝑣1, 𝑣2, 𝑑, 𝑓1, 𝑓2) ∈ F15, the match tuple.

Such That
• 𝐻𝑀 = 𝐻

(
𝑀 | | 𝐻𝑟1 + 𝐻𝑟2

)
• 𝑍1 ∈ {0, 1}
• 𝑍2 ∈ {0, 1}
• (𝑣1, 𝑣2) is the output of the matching engine operation

on the orders 𝑜1, 𝑜2 under the balance constraints 𝑏1, 𝑏2.
• 𝑑 = 𝑠1 · (1 − 𝑠2)
• 𝑍1 = (1 − 𝑍2) · 1𝑣1≠0∨𝑣2≠0

•
𝑍2 = 1 − 1𝐻𝑜1=𝐻 (𝑜1 | |𝑟1) · 1𝐻𝑜2=𝐻 (𝑜2 | |𝑟2)

· 1𝐻𝑏1=𝐻 (𝑏1 | |𝑟1) · 1𝐻𝑏2=𝐻 (𝑏2 | |𝑟2)

· 1𝐻𝑓1=𝐻 (𝑓1 | |𝑟1) · 1𝐻𝑓2=𝐻 (𝑓2 | |𝑟2)

15

Christopher Bender and Joseph Kraut

A.6 VALID MATCH LIT

With Public Variables
• (𝑚𝑖 , 𝑝𝑖)𝑖∈[𝑀𝑃] ∈ F2𝑀𝑃 , the vector of midpoint oracle
prices.

• 𝐻𝑜1 , 𝐻𝑏1 , 𝐻𝑓1 , 𝐻𝑟1 ∈ F, the commitments to the order,
balance, fee, and randomness from Relayer 1.

• 𝐻𝑜2 , 𝐻𝑏2 , 𝐻𝑓2 , 𝐻𝑟2 ∈ F, the commitments to the order,
balance, fee, and randomness from Relayer 2.

• 𝐻𝑀 ∈ F, the hiding commitment to the matches tuple
𝑀 .

• 𝑍1 ∈ F, the bit that is 1 iff 𝑀 is a non-trivial matches
list.

• 𝑍2 ∈ F, the zeroing bit that equals 0 if Party 2 (the non-
lit party) lies about their secret input w.r.t. to the public
commitments 𝐻𝑜2 , 𝐻𝑏2 , and equals 1 otherwise.12

• 𝑜1 = (𝜆1,𝑚11 ,𝑚21 , 𝑠1, 𝑝1, 𝑎1, 𝛼1, 𝜏1) ∈ F8

• 𝑏1 = (𝑚1, 𝜈1) ∈ F2

• 𝑓1 =
(
pksettlecluster1 , 𝜇1, 𝛿1, 𝛾1

)
∈ F5

I Know Private Variables
• 𝑜2 = (𝜆2,𝑚12 ,𝑚22 , 𝑠2, 𝑝2, 𝑎2, 𝛼2, 𝜏2) ∈ F8

• 𝑏2 = (𝑚2, 𝑣2) ∈ F2

• 𝑓2 =
(
pksettlecluster2 , 𝜇2, 𝛿2, 𝛾2

)
∈ F5

• 𝑟2 ∈ F
• 𝑀 = (�̂�1, �̂�2, 𝑣1, 𝑣2, 𝑑, 𝑓1, 𝑓2) ∈ F15, the match tuple.

Such That
• 𝐻𝑀 = 𝐻

(
𝑀 | | 𝐻𝑟1 + 𝐻𝑟2

)
• 𝑍1 ∈ {0, 1}
• 𝑍2 ∈ {0, 1}
• (𝑣1, 𝑣2) is the output of the matching engine operation

on the orders 𝑜1, 𝑜2 under the balance constraints 𝑏1, 𝑏2,
potentially after the constant fees 𝛿1, 𝛿2 have been de-
ducted from the balance tuples.

• 𝑑 = 𝑠1 · (1 − 𝑠2)
• 𝑍1 = (1 − 𝑍2) · 1𝑣1≠0∨𝑣2≠0

•
𝑍2 = 1 − 1𝐻𝑜1=𝐻 (𝑜1 | |𝑟1) · 1𝐻𝑜2=𝐻 (𝑜2 | |𝑟2)

· 1𝐻𝑏1=𝐻 (𝑏1 | |𝑟1) · 1𝐻𝑏2=𝐻 (𝑏2 | |𝑟2)

· 1𝐻𝑓1=𝐻 (𝑓1 | |𝑟1) · 1𝐻𝑓2=𝐻 (𝑓2 | |𝑟2)

12Note that it is impossible for Party 1 (the lit party) to lie about their input, as they have proven every single IoI, and therefore we know their order 𝑜1 and
balance bound 𝑏1 exactly.

16

Renegade Whitepaper

A.7 VALID MATCH ENCRYPTION

With Public Variables
• 𝐻𝑀 ∈ F, the hiding commitment to the matches tuple
𝑀 .

• 𝐻𝑟1 , 𝐻𝑟2 ∈ F, the commitments to the individual parties’
randomnesses.

• pksettle1 ∈ G, the settle key of Party 1’s wallet.

• pksettle2 ∈ G,w the settle key of Party 2’s wallet.

• pksettleprotocol ∈ G, the settle key of the global protocol fee
wallet.

• 𝛾protocol ∈ F, the global protocol fee value.
• 𝐸pksettle1

(𝑁1), the encrypted note for Party 1’s settlement.

• 𝐸pksettle2
(𝑁2), the encrypted note for Party 2’s settlement.

• 𝐸pksettlecluster1
(𝑁𝑅1), the encrypted note for Relayer 1’s fees.

• 𝐸pksettlecluster2
(𝑁𝑅2), the encrypted note for Relayer 2’s fees.

• 𝐸pksettleprotocol
(𝑁𝑃), the encrypted note for the in-protocol

fee.

I Know Private Variables

• 𝑀 =
©«
�̂�1, �̂�2,𝑣1, 𝑣2, 𝑑,

(
pksettlecluster1 , 𝜇1, 𝛿1, 𝛾1

)
,(

pksettlecluster2 , 𝜇2, 𝛿2, 𝛾2

) ª®®¬ ,
the match tuple.

• 𝑁1 =
(
(�̂�1, 𝑣

1
1, 𝑑), (�̂�2, 𝑣

1
2, 1 − 𝑑), (𝜇1, 𝛿1, 1), 1, 𝑟

)
• 𝑁2 =

(
(�̂�1, 𝑣

2
1, 1 − 𝑑), (�̂�2, 𝑣

2
2, 𝑑), (𝜇2, 𝛿2, 1), 1, 𝑟 + 1

)
• 𝑁𝑅1 =

(
(�̂�1, 𝑣

𝑅1
1 , 0), (�̂�2, 𝑣

𝑅1
2 , 0), (𝜇1, 𝛿1, 0), 0, 𝑟 + 2

)
• 𝑁𝑅2 =

(
(�̂�1, 𝑣

𝑅2
1 , 0), (�̂�2, 𝑣

𝑅2
2 , 0), (𝜇2, 𝛿2, 0), 0, 𝑟 + 3

)
• 𝑁𝑃 =

(
(�̂�1, 𝑣

𝑃
1 , 0), (�̂�2, 𝑣

𝑃
2 , 0), (0, 0, 0), 0, 𝑟 + 4

)

Such That

• 𝐻𝑀 = 𝐻
(
𝑀 | | 𝐻𝑟1 + 𝐻𝑟2

)
• 𝑟 = 𝐻𝑟1 + 𝐻𝑟2

• 𝑁1 is properly encrypted under pksettle1

• 𝑁2 is properly encrypted under pksettle2

• 𝑁𝑅1 is properly encrypted under pksettlecluster1

• 𝑁𝑅2 is properly encrypted under pksettlecluster2

• 𝑁𝑃 is properly encrypted under pksettleprotocol

• If 𝑑 = 0, then:

▶ 𝑣11 = 𝑣1 ·
(
1 − 𝛾1 − 𝛾protocol

)
and 𝑣12 = 𝑣2

▶ 𝑣21 = 𝑣1 and 𝑣
2
2 = 𝑣2 ·

(
1 − 𝛾2 − 𝛾protocol

)
▶ 𝑣𝑅1

1 = 𝑣1 · 𝛾1 and 𝑣𝑅1
2 = 0

▶ 𝑣𝑅2
1 = 0 and 𝑣𝑅2

2 = 𝑣2 · 𝛾2

• If 𝑑 = 1, then:

▶ 𝑣11 = 𝑣1 and 𝑣
1
2 = 𝑣2 ·

(
1 − 𝛾1 − 𝛾protocol

)
▶ 𝑣21 = 𝑣1 ·

(
1 − 𝛾2 − 𝛾protocol

)
and 𝑣22 = 𝑣2

▶ 𝑣𝑅1
1 = 0 and 𝑣𝑅1

2 = 𝑣2 · 𝛾1

▶ 𝑣𝑅2
1 = 𝑣1 · 𝛾2 and 𝑣𝑅2

2 = 0

• 𝑣𝑃1 = 𝑣1 · 𝛾protocol

• 𝑣𝑃2 = 𝑣2 · 𝛾protocol

17

Christopher Bender and Joseph Kraut

A.8 VALID SETTLE

With Public Variables
• 𝐶 (𝑊 ′) ∈ F, the commitment to the new wallet.
• 𝐸pkview (𝑊 ′) ∈ G2 × F2𝑀𝐵+8𝑀𝑂+5𝑀𝐹 +9, the encryption of
𝑊 ′ under pkview

• 𝑁wallet-spend (𝑊) ∈ F
• 𝑁wallet-match (𝑊) ∈ F
• 𝑁 note-redeem (𝑁) ∈ F
• 𝑅global ∈ F, the current root of the commitment Merkle
tree.

• 𝜔 ∈ F, the flag that designates if the note being settled
arose from a match.

I Know Private Variables
• 𝑊 = (𝐵,𝑂, 𝐹, 𝐾, 𝑟), the old wallet.
• 𝑊 ′ = (𝐵′,𝑂 ′, 𝐹 ′, 𝐾 ′, 𝑟 ′), the new wallet.
• Open(𝐶 (𝑊), 𝑅global), a Merkle proof that 𝐶 (𝑊) is in-

serted into the commitment tree.
• sksettle ∈ F

• 𝑁 =

(
(�̂�1, 𝑣1, 𝑑1), (�̂�2, 𝑣2, 𝑑2), (�̂�3, 𝑣3, 𝑑3), 𝜔, 𝑟

)
,

a note.
• 𝐸𝑁 = 𝐸pksettle (𝑁), an encrypted note.

• 𝑂 (𝐸𝑁 , 𝑅global), a Merkle proof that the encryption of 𝑁
is inserted into the commitment tree.

Such That
• 𝐶 (𝑊) is correctly computed.
• 𝐶 (𝑊 ′) is correctly computed.
• 𝐸pkview (𝑊 ′) is correctly computed.

• 𝐸pksettle (𝑁) is correctly computed.

• 𝑁wallet-spend (𝑊) is correctly computed.
• 𝑁wallet-match (𝑊) is correctly computed.
• 𝑁 note-redeem (𝑁) is correctly computed.
• Open(𝐶 (𝑊), 𝑅global) is a valid Merkle proof.
• Open(𝐸𝑁 , 𝑅global) is a valid Merkle proof.
• 𝐾 ′ = 𝐾

• 𝑟 ′ = 𝑟 + 2

• pksettle is the valid public key corresponding to sksettle

• For all balances 𝑏 ′𝑖 = (𝑚′
𝑖 , 𝑣

′
𝑖) ∈ 𝐵′:

▶ Either𝑚′
𝑖 = 0, or𝑚′

𝑖 is unique in the list of all mints
of 𝐵′. (i.e., no duplicate mints are allowed).
▶ 𝑣 ′𝑖 is equal to ∑︁

𝑗 ∈[𝑀𝐵] s.t.𝑚 𝑗=𝑚
′
𝑖

𝑣 𝑗

plus (
1
𝑚′

𝑖
=�̃�1∧𝑑1=0 − 1

𝑚′
𝑖
=�̃�1∧𝑑1=1

)
𝑣1

plus (
1
𝑚′

𝑖
=�̃�2∧𝑑2=0 − 1

𝑚′
𝑖
=�̃�2∧𝑑2=1

)
𝑣2

plus (
1
𝑚′

𝑖
=�̃�3∧𝑑3=0 − 1

𝑚′
𝑖
=�̃�3∧𝑑3=1

)
𝑣3

(i.e., balances are unchanged, except for an increase
or decrease according to 𝑁)

• For all orders 𝑜 ′𝑖 = (𝜆′𝑖 ,𝑚′
1𝑖 ,𝑚

′
2𝑖 , 𝑠

′
𝑖 , 𝑝

′
𝑖 , 𝑎

′
𝑖 , 𝛼

′
𝑖 , 𝜏

′
𝑖) ∈ 𝑂 ′:

▶ 𝜆′𝑖 = 𝜆𝑖 ,𝑚
′
1𝑖 =𝑚1𝑖 ,𝑚′

2𝑖 =𝑚2𝑖 , 𝑠 ′𝑖 = 𝑠𝑖 , 𝑝
′
𝑖 = 𝑝𝑖 , 𝛼

′
𝑖 = 𝛼𝑖 ,

𝜏 ′𝑖 = 𝜏𝑖

▶ 𝑎′𝑖 is equal to ∑︁
𝑗 ∈[𝑀𝑂] s.t.𝑚1𝑗 =𝑚

′
1𝑖
∧𝑚2𝑗 =𝑚

′
2𝑗

𝑎 𝑗

minus
1𝜔=1∧𝑚′

1𝑖
=�̂�1∧𝑚′

2𝑖
=�̂�2 · 𝑣1

(i.e., the orders are unchanged, except for a decrease
of the amount corresponding to the matched value)

18

	Abstract
	1 Introduction
	2 Protocol Overview
	2.1 Wallets
	2.2 The Commitment Tree
	2.3 Entire State

	3 Trade Lifecycle
	3.1 Creating a New Wallet
	3.2 Updating a Wallet
	3.3 Handshakes
	3.4 MPC and Match Proofs
	3.5 Encumbering
	3.6 Settlement

	4 Relayer Delegation
	4.1 Key Hierarchy
	4.2 Network Architecture
	4.3 Relayer Fees

	5 Indications of Interest
	6 Conclusion
	A Formal NP Statements
	A.1 VALID WALLET CREATE
	A.2 VALID WALLET UPDATE
	A.3 VALID COMMITMENTS
	A.4 Indications of Interest Statements
	A.5 VALID MATCH MPC
	A.6 VALID MATCH LIT
	A.7 VALID MATCH ENCRYPTION
	A.8 VALID SETTLE

